Smooth UCT Search in Computer Poker

نویسندگان

  • Johannes Heinrich
  • David Silver
چکیده

Self-play Monte Carlo Tree Search (MCTS) has been successful in many perfect-information twoplayer games. Although these methods have been extended to imperfect-information games, so far they have not achieved the same level of practical success or theoretical convergence guarantees as competing methods. In this paper we introduce Smooth UCT, a variant of the established Upper Confidence Bounds Applied to Trees (UCT) algorithm. Smooth UCT agents mix in their average policy during self-play and the resulting planning process resembles game-theoretic fictitious play. When applied to Kuhn and Leduc poker, Smooth UCT approached a Nash equilibrium, whereas UCT diverged. In addition, Smooth UCT outperformed UCT in Limit Texas Hold’em and won 3 silver medals in the 2014 Annual Computer Poker Competition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Play Monte-Carlo Tree Search in Computer Poker

Self-play reinforcement learning has proved to be successful in many perfect information two-player games. However, research carrying over its theoretical guarantees and practical success to games of imperfect information has been lacking. In this paper, we evaluate selfplay Monte-Carlo Tree Search (MCTS) in limit Texas Hold’em and Kuhn poker. We introduce a variant of the established UCB algor...

متن کامل

Achieving Master Level Play in 9 × 9 Computer Go

The UCT algorithm uses Monte-Carlo simulation to estimate the value of states in a search tree from the current state. However, the first time a state is encountered, UCT has no knowledge, and is unable to generalise from previous experience. We describe two extensions that address these weaknesses. Our first algorithm, heuristic UCT, incorporates prior knowledge in the form of a value function...

متن کامل

Achieving Master Level Play in 9 x 9 Computer Go

The UCT algorithm uses Monte-Carlo simulation to estimate the value of states in a search tree from the current state. However, the first time a state is encountered, UCT has no knowledge, and is unable to generalise from previous experience. We describe two extensions that address these weaknesses. Our first algorithm, heuristic UCT, incorporates prior knowledge in the form of a value function...

متن کامل

Exploration exploitation in Go: UCT for Monte-Carlo Go

Algorithm UCB1 for multi-armed bandit problem has already been extended to Algorithm UCT which works for minimax tree search. We have developed a Monte-Carlo program, MoGo, which is the first computer Go program using UCT. We explain our modifications of UCT for Go application, among which efficient memory management, parametrization, ordering of non-visited nodes and parallelization. MoGo is n...

متن کامل

Accelerated UCT and Its Application to Two-Player Games

Monte-Carlo Tree Search (MCTS) is a very successful approach for improving the performance of game-playing programs. This paper presents the Accelerated UCT algorithm, which overcomes a weakness of MCTS caused by deceptive structures which often appear in game tree search. It consists in using a new backup operator that assigns higher weights to recently visited actions, and lower weights to ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015